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ABSTRACT the dislocation of the nuclei in terms of a reduced number of rep

This work proposes a theoretical framework for the investi- resentative nuclei following the quasicontinuum paradigm.
gation of chemical and mechanical properties of nanostructures.
The methodology is based on a two-step approach to compute the
electronic Qensity distribut_ion in an.d around a ljanostructure and PARADIGM OF THE PROPOSED APPROACH
then the displacement of its nuclei. TBkctronic Problenem-
beds interpolation and coupled cross-domain optimization tech-
nigues through a process called electronic reconstruction. In the
second stage of the solution, tlemic Problemdeals with reposi-
tioning the nuclei of the nanostructure given the electronic den-
sity in the domain. It is shown that the new ionic configuration
is the solution of a nonlinear system based on a first-order op-
timality condition when minimizing the total energy associated
with the nanostructure. The long-term goal of this work is a
substantial increase in the dimension of the nanostructures that
can be simulated by using approaches that include accurate DFT
computation. The increase in nanostructure size stems from the
fact that during the solution of thElectronic Problenexpensive
DFT calculations are limited to a small number of subdomains;
the electronic density is then reconstructed elsewhere. For the
lonic Problem computational gains result from approximating

Nanostructures have dimensions in the rangd ef 100
nm and typically contain0? ~ 108 atoms. Applying the well-
established Kohn-Sham DFT method [1] for nonperiodic struc-
tures of 60 atoms has led to simulations that can take up to thre
months to complete. When long range interactions are ignore
and pseudo-potentials are usaby;initio simulations have been
carried out for nonmetallic structures with up to 1,500 atoms [2].
The approach that enabled the increase in the number of aton
belongs to the family of so-called(N) methods [3], which scale
asN with the dimension of the problem (in this case the numbel
of electrons).

This work is not concerned with fundamental electronic
structure computation methods. Acknowledging the small-
dimension constraint placed on the problem by the existing Den
sity Functional Theory (DFT)-based methods, the goal of the
proposed work is to use techniques that, by closing the spe
tial scale gap, render electronic structure information at the

*Address all correspondence to this author. 1 Copyright © 2005 by ASME



nanoscale. This electronic structure information is then used to tions in order to formally quantify this concept, the nanostruc-
investigate the chemical and mechanical properties of the mater-ture is considered to occupy or be contained inside an initial ref
ial. erence configuratioB®  IR3. The structure undergoes a change
In the context of mechanical analysis of nanostructures, of shape described by a deformation mappibg,t) € R3.
the methodology proposed follows in the steps of the quasi- This deformation mapping gives the locationin the global
continuum work proposed in [4-6]. Specifically, this is an ex- Cartesian reference frame of each paifitrepresented in the
tension of the work in [5, 6], because rather than considering a undeformed material frame. As indicated, the mapping migh
potential-based interatomic interaction that has a limited range of depend on timé. The variable does not necessarily represent
validity and is difficult to generalize to inhomogeneous materi- the time contemporary with the structure under consideration. I
als, the methodology proposed usdsinitio methods to provide fact, in a quasi-state simulation framework, this variable might be
for the particle interaction. At the same time it is a generaliza- an iteration index of an optimization algorithm that solves Eq.(2)
tion of the method proposed in [4] because rather than consider- in the casga is made of nuclear point charges.
ing each mesh discretization element to be part of a periodic and The components of the deformation gradient are introduce
uniformly deformed infinite crystal, the proposed method treats as
in a generic optimization framework any structure (nonperiodic
and inhomogeneous) once the electronic density distribution is
available. oD,
The electronic structure computation is approached herein Fo = 0 ©)
as the solution of a constrained minimization problem [7] J

where upper-case indices refer to the material frame, and lowe
case indices to the Cartesian global frame. Thus; Oy @,

”}an[F% Pal (1a) where g represents the material gradient operator, and there
z fore the deformation of an infinitesimal material neighborhood
p(r)dr = Ne (1b) dr® about a point® of D° is expressed as

whereN, represents the number of electrons present in the sys-
tem. The solution to this problem depends parametrically on dri = Fy drS’ (4)
the nuclear densitpa, p = p(pa), @ consequence of the Born-
Oppenheimer assumption. Subsequently, the computation of the
ground state of the entire system as the solution of the optimiza-
tion problem

The concept of small distortion is equivalent to requiring that the
spectral radius of be sufficiently small; that is,

MinE[p(pa). pa] @ |[Ho @2 < K (5)

is expected to hold for almost everywhere in the donifinfor

From a geometric perspective two assumptions are made in a suitable chosen value &f.
order to close the gap between the subatomic-level representation ~ As a consequence of the two assumptions introduced, con
of the electron density, and the nanoscale scale associated withputational savings are anticipated due to a two-tier interpolation
the structures investigated: (a) there is a near regularity in the based approach that will reduce the dimension of the problen
atomic compositions of the material, and (b) almost everywhere First, the electronic structure will be evaluated in some domain:
in the nanostructure the solution to thenic Problemresults by interpolation using adjacent regions in which a DFT-based ap
in only small deformations. The assumption (a) is referred to proach is used to accurately solve the electronic structure prol
asnear-periodicityand is the vehicle that carries first-principles lem; this procedure is calledlectronic density reconstruction
computation results from micro to macro scale. This work does (EDR). Second, the position of the nuclei will be expressed in
not build on the periodicity assumption, it merely assumes that terms of the positions of a reduced set of so-called represent
the material displays close to periodic structure. As explained tive nuclei,repnuclej in an approach similar to the one proposed
later, thenear-periodicityassumption enables the use of interpo- in [6]. The proposed approach solves only for the position of
lation for electronic structure reconstruction. theserepnuclej the position of the rest of the nuclei is then ob-

In regards to the second assumption; ismall deforma- tained by interpolation.
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Figure 1. NANOSTRUCTURE PARTITIONED IN COMPUTATIONAL

DOMAINS.

THE ELECTRONIC PROBLEM

The Electronic Problemrefers to the computation of the
electron density in a domain surrounding the nanostructure.
There are two ways in which this task can be carried out: in
external-mode, when third-party software is employed to this
end, and internal-mode, when at least in some domain the elec-
tron density is computed directly as the solution of Eq.(1). The
Electronic Problemis addressed by carrying out high accuracy
electronic computation in a select number of domains. In the
remaining domains the electron density is recovered by interpo-
lation.

External-mode Electron Density Reconstruction
Consider, as shown in Fig.1, a two-dimensional structure
D = D1 U...UDg that surrounds the nanostructure. The figure

presents a two-dimensional case, but the discussion applies both

to the two- and the three-dimensional cases. For the external-
mode EDR, accurate computation using an established code,
such as NWChem [8] for instance, is used to compuie the
reference domaing; throughy,. The objective is to develop ef-
ficient tools that compute the solution to the electronic structure
problem up to higher-order terrm’,s(F)2 + O(Op F) in the entire
domainD = D1 U...UDy that contains the nanostructure. This
is equivalent to carrying out the first step of the classical homog-
enization technique (fluctuation reconstruction) [9].

In reference to Fig.1, in what follow¥, =Y, U...UYp C
D; more precisely, there is an integer-to-integer mappirng

{1,...,p} — {1,...,u} such thatYj = Dy(;). Considering that
outsideD the electron density is zero, the potential generated b
the total charge in the systemis

Z
p(r’)+pA(r’)d ,
—_— I
[Ir —r/]|

V()=

Taking for instance the reference domatn it is important to
consider separately the potential that is generated by electron
density outside this domain, whose complement is denoted k
Y> =D —Y>, thatis, forr e D

Z
VU Yy) =

Y2

p(r')+ pa(r’)

dr’ +
[fr —r|]

Thus, the methodology for external-mode EDR starts by consic
ering the external potential of Eq.(6) for each of fheeference
domainsy; throughy,. NWChem is applied to compute the elec-
tronic density in these domains. As farass concerned,

V(r) *VeXt(I”Y)—FZ p(r/)
IR ]

2

dr’

which effectively indicates that the influence of the remaining
domains is perceived as the presence of an external potential
which the reference domala is immersed. This approach how-
ever hinges upon the availability @f in Y>. In the reference
domainsyY; throughYy, p is explicitly computed, while based on
the near-periodicityassumption, interpolation is used to recover
pin D—Y. Forp; on domainD; a set of weight$ is considered
that depends exclusively on the type of interpolation considere
(linear, quadratic, etc.). Thus,

S 9a(i)pa(®( + Tie.1)

a=1

()

where the vectoll iy is the translation vector that based on the
periodicity assumption takes the poiﬁf in domainD? to its im-
age in the domaiiYy. Here, a zero superscript indicates the un-
deformed domain, and by convention, Greek subscripts are us
to index quantities associated with a reconstruction dongin

o =1,...,p. Note that in order to define the deformation field,
an appropriate representation fD(rO’,t) is necessary. Follow-
ing the quasicontinuum paradigm [5, 6], this mapping is define
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based on the relative displacement of a subset of nuclei in the introduction of an otherwise involved reconstruction methodol-

nanostructure: ogy. The Thomas-Fermi-based energy functional assumes tt
form
or% )= ¢(r¥RYP(RY 1) (8) E[p,{Ra}] = Enelp. {Ra}] +J[p) (10)
et + K[p] + T [p] +Van ({Ra})

The deformation needs to be represented only at the points
R,‘L A€ B, and is then reconstructed by interpolation at the other where
points of the space, by using the shape functipfis). This as-
pect of the presentation is going to be covered in more detail uz
when discussing thionic Problem Za p(r

Note that not all domains need to be included in the elec- Enelp, {Ra}] = _AZl |RA_(r)| r (112)
tronic density reconstruction. If a domalyy has a defect, 1 . o(r) p(r")
the electronic density is severely distorted away from the near- Jlp] = = s dr dar’ (11b)
periodicity assumption and should not be included in the recon- 2 z [Ir=r'l
struction process in neighboring domains. This translates in tak- T[p] =Cr p§ (r) dr (11c)
ing 9y(i) = 0 for a domainD; C D —Y when carrying out inter- Z
polation (the densitypy is nevertheless used for reconstructing K [p] = —Cx p%(r) dr (11d)
the external potentiaf ®(r; Yy ) for eacha #y).

Concluding on the external-mode EDR, based on an initial M M ZnZs
electron density distribution, three steps that effectively amount Vin({Ra}) = Z Z (11e)

! A=1B=A+1 ||RA—RB||

to a nonlinear Gauss-Jacobi method are iteratively taken to re-

construct the electron density it (1) for eachY, generate the

external potential as in Eq.(6); (2) carry out accurate DFT com- HereCg = 1—30(37[2)2/3, andC, = % (%) 1/3, and the following no-
putation in each domalyy; (3) use Eq.(7) to evaluafein D — Y. tation is used:

This iterative process stops when the change in electron density

between successive iterations becomes smaller than a threshold  Ene - €nergy corresponding to nucleus-electron interaction
value. J - Coulomb energy

K - exchange energy
T - kinetic energy

Internal-mode Electron Density Reconstruction Vin - internuclear interaction energy
The discussion for the internal-mode EDR starts with the Za - atomic number associated with nucleus A
premise that for a given ionic distribution, the electronic energy ri - global position of electron
is expressed as Ra - global position of nucleus of ator
(+) without integration limits - an integral over the entire
7 77 domain.
_ 1 2 . / l
E(p.pa) = ©7(p,pa,n)dr +  O(p,pa,T;p;pa,r)dr dr The expression of the energy functional of Eq.(10) justi-
9) fies the notation used in Eq.(9): the kinetic, exchange, an

This representation is commonly used in conjunction with the nuclear-electronic energy are represented througt®fthterm;
so-called Orbital-Free DFT (OFDFT) method [10]. Hedé? the electron-electron interaction is associated with the ®fm
are the relevant energy density functionggsis the electronic In the Thomas-Fermi case, the optimization problem of Eq.(1

density; andba is the nuclear density, which may include delta  depends parametrically on the positions of the nuclei:
functions. The first term typically includes the kinetic energy

and an exchange-correlation term, whereas the second integral z
includes all pairwise interactions. Details regarding the defini- minpe  E(p;{Ra})+A ( pdr — N> (12a)
tion of these terms are provided by several authors [11-13]. Z

As an example in this paper the proposed methodology is st pdr—N=0 (12b)

applied in conjunction with Thomas-Fermi DFT [14, 15]. The
Thomas-Fermi functional has well-known severe accuracy lim-
itations. It provides, however, a simple vehicle that allows the In a domain decomposition framework, it can be shown [16]
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that solving the above optimization problemDnis equivalent
to solving a set of smaller optimization problems on dom&ins
For this define

_ Z s Z
Ei[pi,Ai;pi, {Ra}] =C¢  pP(r)dr — p(r) dr(13)
Z Z o ZZ o
_ =
n pi(r )Pl/( )dr dr’+} Pl(r)pl/(r)d dr’
oo =] 2 =]
4 z
Za pi(r
- dr+Aj pidr
&1, TRa- 1 AU
wherep; denotes the electronic densitylfn, i=1...,uusedas

in Eq.(6) to generate the external potential in which the domain
D; is considered immersed.

The nonlinear-system approach. The equivalent op-
timality conditions for the subdomain optimization problems
[16] are

i=1...,u (14a)
(14b)
(14c¢)

O Ei (pi, Ai; pi, {RA}) =0,
AM=...=A
R: u
pdr —Ne =10

Following the reconstruction paradigm, this accurate computa-

tion of the electron density is only going to be carried out in
the reference subdomaiivg throughY,, (that is, Dy ) through
Dy(p))- The first order optimality conditions for a generic do-
mainYy € Y assume the form [16]

pi(r’)

dr’
o [[r—r'|

(15)

"2
M Z
2 R A0

Next, the densityp; on domainD; is expressed in terms of re-
construction densitiepy € Yq,0 € {1,...,p} based on Eq.(7).
Taking into account the deformation of the structure,

pi(r’) pZ / ~ / /
dr’ = Pa (P(r%,1))Kig (r%r%) dr’(16a)
pi [[r =1 &
4
; o_ T
Km( 07 0/) SU(I) |F(r /Tlavt)| (16b)
||P(r0,t) — d(r% —Tig,t)]|
Define forr® € Y2
0,0\ _ w i (40 O
Kay( 3 = ZKiY(r ; ) (173)
i=
Then, Eq.(15) yields
5 % 0/ 0/
§C G ( )+ ZL Kay(r 0 Py(P(r™,t))dr”(17b)
4ol
_Z A=
5GP AZ Cae T

which should hold for any® € Y. Finally, sincep > 0, a new

functionn is introduced such that

p(®(r, 1) =n*(r.0) (18a)
wheres> 4is an even integer; arecommended valueist, and
this will enforce only non-negative values for the dengityrhis
new function must then satisfy in the subdom¥jrihe following
integral equations:

s p’t
*CFr]a _*er]a‘FZ\ Kay 07 O/)ﬂy( a) O/ (18b)

PACEE

The algorithm at this point calls for the solution of a nonlin-
ear system of integral equationspg, o = 1,...,p. In order to
solve this system, the reconstruction domaigpgre meshed by
using hexahedrons. These meshes are denoted in what follo
by Gi1 through Gp, and they are associated with throughYy,
respectively.

+A=0

R/(i, )|

Copyright © 2005 by ASME



The direct numerical solution of the nonlinear system of in-

quadrature with weightsa:

tegral equations becomes intractable in Cartesian coordinates be-

cause of the singularity when the grid points in a méghap-
proach a nuclei of locatioRp (see Eq.(18b)). When approached

in spherical coordinates in a three-dimensional representation .

this apparent singularity is nonexistent [16]. Below, a potential-
smoothing step is introduced to address the situation when

RY. Compared to the original terffd(r%t) — ®(RY,t)|| 7%, the
o-smoothing function

o0 n-o®Q 0l
_1l-e v

(o, t) — o(RY 1)

Ss(r%. R, 1) (19)

behaves similarly for large values gfb(r%t) — ®(RY,t)|| and

4 small but positive, but it converges %orather than going to
infinity whenr® — Rg. Thus, the smoothing process applied to
Eq.(18b) leads to

a. s 27 0 (0'\nS((0
_écxr]3+ > Kay(r,ro)ng(r
V:]-Yo
Y

>
3

/

2s o
Cr r]f.;ar 7t)dr (20)

M
-y ZaSs(r% Rt +A=0
A=1

To make the presentation simpler, the following notation is intro-
duced:

ng; — the value of at the nodg of grid G

T— a generic grid discretization cell of volumie||

V(1) — the set of vertices associated with ce(four for a
tetrahedron, eight for an hexahedron, etc.)

| Ga| — the number of grid points iy

Yy — undeformed reconstruction domain meshed vgih
Yy =Ureg, T

After discretization, the integral equation above yields at an ar-
bitrary grid nodd € Gy of Iocationri0 € Ya,

5 2 ° z 0,0 s/0
éCFno?i + Z Z Kay(ri,r™) ﬂy(f
y=1|1€Gy

/

Hdr” | (21)
4. 5 & 0 RO
—§er]a| _gl ZA 55(r| 7RA7t) +)\ == O

The integral ort is performed byg-point Gaussian numerical

6

Z g
/ / / / /
KGV(riOer ) ni(ro 7t)dr0 ~ ||TH Z W KO‘V(riOarIO ) r]\s/(rlo at)
=1

Figure 1 shows in the two-dimensional case a mesh cell and th
quadrature points. As indicated in this figuré,describes the
position of the grid nodes; the interior points (quadrature points
are located at?. The abscissaé)/ of the quadrature points are
different from the mesh (grid) points, and the value of the un-
known functionn at these abscissas is obtained by interpolation
Interpolation at pointlo' € T, using a set of shape functiopg
associated with the nodes= (1), yields

~
~

NP 0~ Y nfdar? =Y n oy

de?(1) de?(1)

Wheretb'd are constants that can be precomputed. If one define
forr®c Yy andr? €Y,

/

W ¢Id Kay(r07r|0) 5

Kaya (r®) =

(22a)

M-

the discretized form of the integral equation expressed at grit
nodei € Gy of Iocationri0 € Yo becomes

S IS Kayalr®) n3| (220)

5. 2 4 s @2
éCFr]o?i - écxﬂéi + Z
y=1|1€6y dev

M
-5 ZaSs(r’, R +A=0
A=1

By denoting the left side of Eq.(22b) Wi (n), wheren =
(N11,N12,---,Np1,Np2;---) ", the nonlinear system of equations
that should be solved becomes

Pai(n) =0 (23)

forae{1,2,...,p},i=1,...,|Gal

One additional equation is added to the setsdf ,; |Gal
equations above, and it follows from the charge constraint o
Eq.(1b). The central idea is again to use the electronic densit
in the reconstruction domaing to express the electronic den-
sity in the whole domairD. Skipping the intermediary steps,
this yields

Copyright © 2005 by ASME



then minimized.
Fora,y=1,2,....p,1%e Y2, r% € Y2, define

z p Z
p(dr =5 ng(r%Ra(rt)dr® (24a)
D O(:1Y0 u u o
’ 7 Lo R =Tia O] [P =Ty )]
5 0 u _ 0 qu(roard) = ZVa(l)Vy(]) ®(r0 Tla t (1o TJ‘Vt
Ral(r ,t)zzlaao) IF(r® = Tig,t)| (24b) =T |P(r® = Tig,t) = P(r? —Tjy, 1)
= oy uo |F(r®—Tiq,t)|
 cauation. us . )= 2,2V o0 70,0 - oREY
For the charge constraint equation, using for the evaluation of u=1'= ’ A
the integral on a cell of the undeformed g¥fithe same quadra- Mo (r%) = S Va (i) |F(r° —Tiy t)]
ture rule and using the same interpolation method to evaluate the i; ’

function at the quadrature points yields:

Based on Eq.(7), several of the terms in Eq.(10) becom:
functions of densities in the representative domains:

P N
> {z > ﬂdead] —Ne=0 (25a) b pZZ
" ety >l pa(@r )Ry ))arCar

e — 3 W 8 Ra(r2.0) (25b) e
- Euep) =~ 5 Lo)pa(0(r%.0)0”,
I_f a Newton-type method is considered for th_e solution of the ;Yc?
ggnlmear system of Egs.(23) and (25a), the partials are computed odr — i Ma(ro)pa(db(ro,t))dro
610

OPy  10s . 22
arl(li 9 Cani

4 53
— 300G+ 3 Il 8 ke () N3
€Y The difficult part has to do with the kinetic energy and ex-
change term3 [p], K[p] whose dependence on the density is not
linear and, outside the Thomas-Fermi theory, not even simple t
state. Assume that the latter terms are described by a unival

ate density@!(p,r), as indicated by the first term of Eq.(9). For

(26a)
whered = 1 if for T€ Gg, i € (1), andd% = 0 otherwise.
Wheni # j ora # B3,

0Py _ instance, for the Thomas-Fermi representation,
L= S |[t]] O ke (r) n5;? (26b) P
Ngj 1eY?
B
1 — Crp3(r) —Cp3
Likewise, ©%(p.r) =Crp3(r) —Cxp3(r)
Py P X which then leads to
= SN5g" O Kad (26c)
anBj uzltezyao ad 6rd . 7 )
Tl +Klpl = 3 Ma(r®)©* (pa, &(r°.0))ck°
a=1 'a
where, by conventionPyo(n) is a notation for the left side of
Eq.(25a).
a-(253) With these approximations and definitions and referring
back to Eq.(10), the following electronic structure computation
The Optimizations approach.  In this approach the in-  problem is defined:
terpolation of Eq.(7) is used to create a reduced energy functional
that depends only on the electron dengity in the reconstruc- 0 ) z
tion domainsyy, o = 1,..., p. This reduced energy functional is minE™(p), subjectto p=N, (27)
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where we use the superscript “IO” to denote the “interpolate-and- mization problem
optimize” approach, an&'C represents the quantity obtained
in Eq.(10) after expressing the energy as a function of electron
densities in the reconstruction subdomains only. The evalua-
tion of the energyE'® on a grid, and details of the optimization
process (gradient computation) is detailed in an upcoming publi-
cation [17].

n)w(inf(xl,T(xl)) (29)

has the same solution as the previous two, provided that the re
duced Hessian is positive definite, which should be true if the
original Hessian was positive definite, and the interpolation map
Nonlinear equations vs. optimization approaches ping is full rank. This observation presents the advantage the

Recall that optimality conditions followed by interpolation ~ ©On€ solves an optimization problem as opposed to a system ¢
eventually led to the nonlinear system of Egs.(22b) and (24a). Nonlinear equations, with better global convergence safeguard
One can be immediately prove that, in aggregate, this system YWhen there are many local minima, this should help avoid the
does not represent the first-order conditions of an optimization POINnts that do not have the correct inertia of the Hessian.
problem. That issue is a bit unsettling because solving optimiza- The case in Eq.(28) corresponds to the internal nonlinear
tion problems is typically a more robust process than is solving system approach, whereas the case in Eg.(29) corresponds
equivalent nonlinear equations, since any local minimum of the the internal optimization approach. The following result settles
optimization problem satisfies the nonlinear equation of its op- in the positive the question of whether the two approaches ar
timality conditions. When only a nonlinear system is available, equivalent in the limit of the ansaska = T (x1) [16]:
a local minimum of the residual is not necessarily a solution of
the nonlinear system. It is therefore important to assess whether
there eX|st§ an optimization problem t_hat.|s equwalen_t, atleast up Theorem 1. Assume that the solutiofi —
to the leading order of the homogenization error, with the non-
linear system (see [16] for a mode detailed discussion on this
topic).

In an abstract formulation, we have the following problem:

(X;,%5) of the orig-
inal optimization problem satisfigs¢;, — T(x})|| < 1; therefore
the multiscale ansatz is not perfect but is merely very good. The
the solution%; of the nonlinear equation ang of the reduced
optimization problem satisfy

min f X ,X * S * * * S * *
min f04.%) X — %l = O(pg —TODID) 1 — % = O(lx — T(x5)|D)

where the variables, correspond to the representative degrees of

freedom, whereas correspond to the rest of the degrees of free-

dom, and an operatdr relatesx, to x;. Thus, in EDR the repre- NANOSTRUCTURE SHAPE INVESTIGATION

sentative degrees of freedom are the ones used to parametrize the 114 optimization of the geometry of a hanostructure (callec

electron dgnsity iq the re.presenta'.[ive domafm =1,2,....p; hereafter thdonic Problen), to find the most stable shape re-
the mappingT (-) is the interpolation-based operator from (7). qyces to minimizing the total energy given a ground state elec
Likewise, in the quasicontinuum method [6], the representative 6ic energyE, as a function of the position of the nuclei. More
degrees of freedom are the positions of the representative nu-pqisely, the equilibrium configuration of a nanostructure is pro-

clei repnuclej the location of the remaining nuclei, abstractly ;qeq by that distribution of the nuclei that minimizes the energy
denoted byo, is then obtained ag = T (x1), whereT (x;) is the

piecewise linear interpolation mapping with nodes atrdpnu-
clei. Etot = Ee + Enn (30)
Based on this observation, one can formulate the nonlinear

equation . . .
whereEp,, is the nucleus-nucleus interaction energy and, centra

to this development is the electronic ground-state energy for
Oy f(x1,%2), X2 =T (x1) (28) the considered nuclear distribution.

Following the Born-Oppenheimer assumption, the elec-
which will provide the same solution as the original problem. tronic energy depends parametrically on the positions of the nu
However, the problem is an equilibrium problem with equilib- clei through the dependence of the electronic density on the nt
rium constraints rather than a minimization problem. Further- clei positions. Thus, in a general form (that has the Thomas
more, it immediately results using the chain rule that the opti- Fermi of Eq.(10) as a subcase),
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z

TIp(N)]+E"¥[p(r)] +E*p(r)] +  p(r)Vex(r; {Ra}) dr

(31)
whereT [p(r)] is the kinetic energy functionaE" [p(r)] is the
electron-electron Coulomb repulsion enefg¥:[p(r)] is the ex-
change and correlation energy, angk(r; {Ra}) is the ionic po-
tential, which parametrically depends on the distribution of the
nuclei{Ra}. The explicit dependence df[p(r)] andE*“[p(r)]
on the densityp(r) is typically not available, and consequently
it is approximated in some fashion [10, 18-20], an issue beyond
the scope of this document. According to the Hohenberg-Kohn
theorem [7], the electronic density is such that it minimiEgs
subject to the charge conservation constraint of Eq.(1b). The fol-
lowing results is proved in [16]:

Ee

Theorem 2. Consider the optimization problem

min Eigt = Ee + Enn (32a)
{Ra}

subject to the constraint that for a nuclear configuratifRa }

the energyE; is the electronic ground-state energy, and the elec-
tronic densityp that realizes this electronic ground energy addi-
tionally satisfies the charge constraint equation of Eq.(1b). Un-
der these assumptions, the first-order optimality conditions for
the optimization problem of Eq.(32a) lead to

 OEext
~ dRk

OEnn -0

F -
K dRk

(32b)

whereF is interpreted as the force acting on nuclégsand

w Z
Eea(ri{Ra}) = = 5 P)Vex(r: {Ra})dr  (320)
A=1
M 2 Zap(r)
= _A:l "~ Ra| dr
Emn = = y 3 2l (32d)

24 pxaRee

For each nucleuk in the system, Eq.(32b) leads to the con-
dition

r— Rk M

Ra—Rk
" Zp—2nr "
IIr — R |2

f)(r) A 3 (33)
a=fAk  ||Ra—Rk]|2

A couple of remarks are in order. First, the value of the
above theorem is that it allows to solve the nuclear equilibrium
problem by using only the solution of the electronic density prob-
lem, and not the values and the derivatives of the kinetic and ex
change energy functionals. Therefore, an entirely nontranspare
encapsulation of the electronic structure problem can be use
which allows the proposed approach to work well with legacy
codes that do not provide all the needed derivatives. The ke
observation is that once the electronic density is available, th
equilibrium conditions of EQ.(33) can be imposed right away.
Whether the electronic structure computation is done with third-
party software is irrelevant; moreover, there is no need to knov
the explicit dependence of the eneigyon the electronic den-
sity p(r). Second, as suggested in [21], the one-atom condition
of EQ.(32b) can be replaced by cluster conditions, an alternativ
that will be explored in the future.

When a local quasicontinuum approach is used, the cond
tion of Eq.(33) is imposed only forepnuclej that is, only for
K € B (see Eq.(8)). The position of the rest of the atoms in the
system is then expressed in terms of the position ofé¢pauclei
Therepnucleibecome the nodes of an atomic mesh, and interpo
lation is used to recover the position of the remaining nuclei. Fol
instance, if the atomic mesh is denoted &, T is an arbitrary
cell in this mesh/(1) represents the set of the nodes associate:
with cell T, and¢ is the shape function associated with nage
then the condition of Eq.(33) is approximated as

> RidL(Ra) —Rk

LeV(1)

>
eV

z

p(r)— 2K

3
[Ir —Rgl[2

dr + Za =0
ZM; | S RudL(Ra)—R||?

®
(34)

This effectively reduces the dimension of the problem from
3M (the(x,y,z) coordinates of the nuclei), ®Mep, whereMyep
is the number of nodes in the atomic mesh (the numbezmiu-
clei). The sum in Eq.(34) is most likely not going to be the sim-
ulation bottleneck (solving the electronic problem fois sig-
nificantly more demanding), but fast-multipole methods [22—-24]
can be considered to speed the summation.

L

Denoting byP;j, i = 1,...,Mep, the position of the represen-
tative nucleusy;, the set of nonlinear equations of Eq.(34) can
be grouped into a nonlinear system that is solved for the relaxe
configuration of the structure.

fl(P17 P27 v PMrep) =
f2(P1,Pa, ... Parey) =

[eoNe]

_ (35)
erep(Pl, Po,... PMrep) =0
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wherefk is the left side of Eq.(34). Finding the solution of this

system is done by a Newton-like method. Evaluating the Jaco-

bian information is straightforward but not detailed here.
Finally, note that within Eqg.(34) a connection is made back

PREPROCESSING )
(Partition D in D, (i =1...,u))

Select reconstruction
domainsY, (a =1...,p)

to Eq.(8); the position of an arbitrary nucle@sn cell T is com-
puted based on interpolation using the no@&s), one of many
alternatives available (one could considepnucleifrom neigh-

(M@ domainsY, (a=1..., p))

@rovidepj,"" inY, (@=1..., pD

boring cells for instance). Effectively, this provides in Eq.(8) an
expression foP(-,t) that depends only oA € /(1) rather than - _

Initialize deformation

mapping @ to identity

& J
Y
PROPOSED COMPUTATIONAL SETUP s N
Given a nanostructure of known atomic composition (not 4{ Interpolate o from o™ }

necessarily mono-atomic or single-crystal), the goal is to deter-
mine the electron density distribution as well as the final con-
figuration of the nanostructure, that is, the mappingBecause :
of the assumption that the kinetic energy of the nuclei is zero, Sowwsten'wﬂmegm
the problem corresponds to a zero Kelvin temperature scenario. [

A methodology that handles the nonzero temperature case is not

Run external DFT code
inY,(a=1...,p)

Equations for p™"

i . .. ELECTRONIC
addressed here; most likely, it would follow an approach similar PROBLEM
to that of Car-Parrinello [25], or Payne et al. [26]. ontv ~

~ Asindicated in Fig.2, the proposed solution has three prin- position changes Y
cipal modules: th@reprocessingtage, theElectronic Problem
and thelonic Problem Preprocessings carried out once at the Reposition nuclei
beginning of the simulation. A suitable chosen donfairs se- based on o™ PR'OOE';'L'EM

lected to include the nanostructure investigated. The partition-
ing of D into u subdomaind;,i = 1,...,u, is done to mirror
the underlying periodicity of the structure. A set of subdomains
Dy (1) throughDy, ;) is determined to constitute the reconstruc-
tion domains, and as in Fig.1, they are denoted{hroughy,,.
In thesep subdomains explicit electronic structure computation
will be carried out accurately. A set of values of the electronic is compared t@", and the computation restarts tRkectronic
density is required at the nodes of the discretization mesh; the Problemafter settingp'™ = p"e% unless the corrected and initial
initial guess for the electronic density could be a uniform distri- values of the electronic density are close. This iterative proces
bution throughout the nanostructure or, when practical, could be constitutes the first inner loop of the algorithm.
obtained based on a periodic boundary conditions assumption by Thelonic Problemuses the newly computed electronic den-
computing it in a domai; and then cloning for the remaining  sity to reposition the nuclei and thus alter the shape of the stru
domainsDg. Preprocessingoncludes with the initialization of ture. The nonlinear system of Eq.(35) provides the position o
the deformation mag to be the identity mapping. therepnuclej the other nuclei are positioned based on the quasi
The Electronic Problemcan be solved externally or inter-  continuum paradigm according to Eq.(32b). The nonlinear sys
nally. When it is solved externally, a specialized code such as tem in Eq.(35) is solved by an iterative method, which leads tc
NWChem [8] is employed to compute the electronic density the second inner loop that in turn has four steps:
in the reconstruction subdomailg,a € {1,...,p}. When the
Electronic Problenis solved internally (only for qualitative stud- 1. Evaluate the integral of Eq.(34); when necessary, evaluat
ies, using for instance the Thomas-Fermi DFT, or OFDFT), the its partial with respect t&;
computation requires a mesh grid on which the integrals asso- 2. Evaluate the double sum of Eq.(34), which is based on a pal
ciated with the formulation are discretized. The algorithm uses titioning of the structure; when necessary, evaluate its partic
three-dimensional interpolation to provide for the densitin with respect to the position of the representative atoms
wherej € {1,...,u} —{x(1),...,x(p)}. 3. Carry out a quasi-Newton step to update the positRnsf
Independent of the type of solver invoked (external or in- the M representative nuclei.
ternal), using a suitable norm the new electronic dengf/ 4. Go back to 1 if not converged

Reevaluate deformation
mapping ®

Figure 2. COMPUTATIONAL FLOW.
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Comparison of two Thomas Fermi implementations
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35

251
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—#— Direct Simulation
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Figure 3. THOMAS-FERMI SOLUTIONS.
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The precision in determining the position of the nuclei is di-
rectly influenced by the accuracy of the electronic dengity).
Accurately solving th&lectronic Problenis computationally in-

Total charge in subdomains
1.04 T T T T T
—#— Direct Simulation
Linear Reconstruction
—+&— Quadratic Reconstruction

1.02 b

0.9 I I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Index of the domain

THOMAS-FERMI TOTAL CHARGE.

11

Figure 4.

at the position of the atom and whose length is 1/5 of the dis
tance between two atoms. This results in 11 domdns,D,
..., D11; for this exampleYl =Dq,Y> =Dy, Y3 = De, Yy = Dlo,

tensive, and thus an important issue not addressed by this work isy; = Dy;. For discretization of the integral operators the trape-

the sensitivity of the solution of the nonlinear system of Eq.(35)
with respect top(r). It remains to determine whether a crude
approximation of the electronic density suffices for solving the
lonic Problemat a satisfactory level of accuracy.

After determining the position of the nuclei, the algorithm
computes the new deformation mapp#gaccording to Eq.(8).

If the overall change in the position adpnucleiat the end of the
lonic Problemis smaller than a threshold value, the computation
stops; otherwise the new distribution of the nuclei is the input to
a newElectronic Problen(second stage of the algorithm).

In summary, the algorithm passes throughRheprocessing
stage once. It then solves tRt¢ectronic Problen(the first inner
loop) and proceeds to thenic Problem(the second inner loop).
The outer loopElectronic Problemfollowed bylonic Problen)
stops when there is no significant change in the position of the
repnuclei

NUMERICAL RESULTS

For a simple example, this section compares the numeri-
cal results obtained with the direct minimization approach of the
Thomas-Fermi DFT, with the ones produced by EDR using the
internal optimization approach introduced in this paper.

In the one-dimensional test, eleven equally spaced nuclei
with unit charge,Zy = 1, are considered; the total number of
electrons idNe = 11. The location of the atoms corresponds to

zoidal rule was considered. Only the domalhg Dg,D;1g are
used for interpolation in order to avoid the boundary distortion.
Either piecewise linear, or quadratic interpolations is employec
for the interpolation-based approach. The param@&ter10~—*
leads to a slightly different regularization from that described in
the previous sections (see Eq.(19)), whereby terms of the typ
1/||-| are replaced witl /|| - +9]|.

The resulting electronic structure optimization problem is
solved with the augmented Lagrangian software Lancelot [27]
which uses an iterative method to solve the bound constraine
subproblem obtained after penalization of the constraints. Whe
using the interpolation method, the interpolation conditions of
Eq.(7) are actually enforced as constraints, rather than substitu
ing them in the functional that describes the problem E&eof
Eq.(27)). When efficiency is a concern, this substitution would
be carried out and only the electronic density degrees of freedol
in D1, D2,Dg,D10,D11 Would be considered. The objective here
is only to validate the interpolation-based reconstruction withous
regard to computational efficiency.

The solution of the direct numerical simulation and of the
linear-interpolation-based optimization are presented in Fig.3
The results are almost identical, which is an indication that the
interpolation approach was effective in reconstructing the so
lution in the “gap” domains. The results were better yet for
the quadratic-interpolation-based reconstruction (not presente
in the figure). Note, however, that the solutions are not identical

the peaks seen in Fig.(3). A mesh is constructed that has 50 nodesThis can be seen by computing the total charge in the subdc

per cell, with 30 of them equally spaced on an interval centered

11

mains. The results for the three numerical experiments are pre
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